877 research outputs found

    Shocks in dense clouds. IV. Effects of grain-grain processing on molecular line emission

    Full text link
    Grain-grain processing has been shown to be an indispensable ingredient of shock modelling in high density environments. For densities higher than \sim10^5 cm-3, shattering becomes a self-enhanced process that imposes severe chemical and dynamical consequences on the shock characteristics. Shattering is accompanied by the vaporization of grains, which can directly release SiO to the gas phase. Given that SiO rotational line radiation is used as a major tracer of shocks in dense clouds, it is crucial to understand the influence of vaporization on SiO line emission. We have developed a recipe for implementing the effects of shattering and vaporization into a 2-fluid shock model, resulting in a reduction of computation time by a factor \sim100 compared to a multi-fluid modelling approach. This implementation was combined with an LVG-based modelling of molecular line radiation transport. Using this model we calculated grids of shock models to explore the consequences of different dust-processing scenarios. Grain-grain processing is shown to have a strong influence on C-type shocks for a broad range of magnetic fields: they become hotter and thinner. The reduction in column density of shocked gas lowers the intensity of molecular lines, at the same time as higher peak temperatures increase the intensity of highly excited transitions compared to shocks without grain-grain processing. For OH the net effect is an increase in line intensities, while for CO and H2O it is the contrary. The intensity of H2 emission is decreased in low transitions and increased for highly excited lines. For all molecules, the highly excited lines become sensitive to the value of the magnetic field. Although vaporization increases the intensity of SiO rotational lines, this effect is weakened by the reduced shock width. The release of SiO early in the hot shock changes the excitation characteristics of SiO radiation.Comment: Published in Astronomy and Astrophysics (2013). 26 pages, 16 figures, 14 table

    Resonant excitonic emission of a single quantum dot in the Rabi regime

    Full text link
    We report on coherent resonant emission of the fundamental exciton state in a single semiconductor GaAs quantum dot. Resonant regime with picoseconde laser excitation is realized by embedding the quantum dots in a waveguiding structure. As the pulse intensity is increased, Rabi oscillation is observed up to three periods. The Rabi regime is achieved owing to an enhanced light-matter coupling in the waveguide. This is due to a \emph{slow light effect} (c/vg3000c/v_{g}\simeq 3000), occuring when an intense resonant pulse propagates in a medium. The resonant control of the quantum dot fundamental transition opens new possibilities in quantum state manipulation and quantum optics experiments in condensed matter physics.Comment: Submitted to Phys. Rev. Let

    Polarization measurements analysis II. Best estimators of polarization fraction and angle

    Full text link
    With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, it becomes critical to evaluate the performance of estimators for the polarization fraction and angle. These two physical quantities suffer from a well-known bias in the presence of measurement noise, as has been described in part I of this series. In this paper, part II of the series, we explore the extent to which various estimators may correct the bias. Traditional frequentist estimators of the polarization fraction are compared with two recent estimators: one inspired by a Bayesian analysis and a second following an asymptotic method. We investigate the sensitivity of these estimators to the asymmetry of the covariance matrix which may vary over large datasets. We present for the first time a comparison among polarization angle estimators, and evaluate the statistical bias on the angle that appears when the covariance matrix exhibits effective ellipticity. We also address the question of the accuracy of the polarization fraction and angle uncertainty estimators. The methods linked to the credible intervals and to the variance estimates are tested against the robust confidence interval method. From this pool of estimators, we build recipes adapted to different use-cases: build a mask, compute large maps, and deal with low S/N data. More generally, we show that the traditional estimators suffer from discontinuous distributions at low S/N, while the asymptotic and Bayesian methods do not. Attention is given to the shape of the output distribution of the estimators, and is compared with a Gaussian. In this regard, the new asymptotic method presents the best performance, while the Bayesian output distribution is shown to be strongly asymmetric with a sharp cut at low S/N.Finally, we present an optimization of the estimator derived from the Bayesian analysis using adapted priors

    A compact representation of the 2 photon 3 gluon amplitude

    Full text link
    A compact representation of the loop amplitude gamma gamma ggg -> 0 is presented. The result has been obtained by using helicity methods and sorting with respect to an irreducible function basis. We show how to convert spinor representations into a field strength representation of the amplitude. The amplitude defines a background contribution for Higgs boson searches at the LHC in the channel H -> gamma gamma + jet which was earlier extracted indirectly from the one-loop representation of the 5-gluon amplitude.Comment: 15 pages Latex, 6 eps files included, revised versio

    Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems

    Full text link
    The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires (QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of different generations of samples shows that the localization length has been enhanced as the growth techniques were improved. In the best samples, excitons are delocalized in islands of length of the order of 1 micron, and form a continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence of the radiative lifetime. On the opposite, in the previous generation of QWRs, the localization length is typically 50 nm and the QWR behaves as a collection of quantum boxes. These localization properties are compared to structural properties and related to the progresses of the growth techniques. The presence of residual disorder is evidenced in the best samples and explained by the separation of electrons and holes due to the large in-built piezo-electric field present in the structure.Comment: 8 figure

    Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    Full text link
    We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor 2\sim2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the VV band extinction cross-section presents variations of the order of 20%\sim20\% (4050%40-50\% in extreme cases), while ISRF intensity varies by 30%\sim30\% (60%\sim60\% in extreme cases). This must be accounted for in future modelling.Comment: A&A, in pres

    Uncooled bolometer response of a low noise La2/3Sr1/3MnO3 thin film

    Full text link
    We report measurements of the optical responses of a La2/3Sr1/3MnO3 (LSMO) sample at a wavelength of 533 nm in the 300-400 K range. The 200 nm thick film was grown by pulsed laser deposition on (100) SrTiO3 substrate and showed remarkably low noise. At 335 K the temperature coefficient of the resistance of a 100 micrometers wide 300 micrometers long LSMO line was 0.017 K-1 and the normalized Hooge parameter was 9 e-30 m3, which is among the lowest reported values. We then measured an optical sensitivity at I = 5 mA of 10.4 V.W-1 and corresponding noise equivalent power (NEP) values of 8.1 e-10 W.Hz-1/2 and 3.3 e-10 W. Hz-1/2 at 30 Hz and above 1kHz, respectively. Simple considerations on bias current conditions and thermal conductance G are finally given for further sensitivity improvements using LSMO films. The performances were indeed demonstrated on bulk substrates with G of 10-3 W.K-1. One could expect a NEP reduction by three orders of magnitude if a membrane-type geometry was used, which makes this LSMO device competitive against commercially available uncooled bolometers.Comment: 15 pages. Accepted for publication in Appl. Phys. Let

    Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization

    Full text link
    Within four nearby (d < 160 pc) molecular clouds, we statistically evaluate the structure of the interstellar magnetic field, projected on the plane of the sky and integrated along the line of sight, as inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz and from the optical and NIR polarization of background starlight. We compare the dispersion of the field orientation directly in vicinities with an area equivalent to that subtended by the Planck effective beam at 353 GHz (10') and using the second-order structure functions of the field orientation angles. We find that the average dispersion of the starlight-inferred field orientations within 10'-diameter vicinities is less than 20 deg, and that at these scales the mean field orientation is on average within 5 deg of that inferred from the submillimetre polarization observations in the considered regions. We also find that the dispersion of starlight polarization orientations and the polarization fractions within these vicinities are well reproduced by a Gaussian model of the turbulent structure of the magnetic field, in agreement with the findings reported by the Planck collaboration at scales greater than 10' and for comparable column densities. At scales greater than 10', we find differences of up to 14.7 deg between the second-order structure functions obtained from starlight and submillimetre polarization observations in the same positions in the plane of the sky, but comparison with a Gaussian model of the turbulent structure of the magnetic field indicates that these differences are small and are consistent with the difference in angular resolution between both techniques.Comment: 15 pages, 10 figures, submitted to A&

    Key parameters design for online battery electrochemical impedance tracker

    Get PDF
    International audienceNew applications in transport and energy storage require the use of Lithium-ion batteries. Advanced battery management systems including electrochemical impedance measurement are studied for the determination of the state of the battery, the prediction of the autonomy, the failure and security management. Taking into account constraints of cost and simplicity, we propose to use the existing electronics of current control and we evaluate the effect of the electronics design on the performance of a frequency evolutionary estimation of the electrochemical impedance. This recursive method relies on a wideband active approach and provides both an accurate estimate of the impedance in the frequency area and a tracking of its temporal variations. Benefits are the limitation of the data memory required and the amount of operations that can be completely carried out by a target such as a microcontroller. We propose a methodology to design the key parameters of electronics in function of the frequency band of interest and the desired accuracy. We highlighted that electronics of conventional BMS can host this tracking algorithm, with analog to digital converters of 10 bits or more, having an analog stage to adapt their dynamics, and that microcontrollers can be enough powerful to perform calculations, both in terms of number of operations and speed of execution. This design strategy has been applied to define a prototyping environment for a BMS based on an ARM microcontroller which is expected to provide the tracking impedance of a battery every 250 ms with less than 0,5 % of error

    The evolution of amorphous hydrocarbons in the ISM: dust modelling from a new vantage point

    Full text link
    Context. The evolution of amorphous hydrocarbon materials, a-C(:H), principally resulting from ultraviolet (UV) photon absorption- induced processing, are likely at the heart of the variations in the observed properties of dust in the interstellar medium. Aims. The consequences of the size-dependent and compositional variations in a-C(:H), from aliphatic-rich a-C:H to aromatic-rich a-C, are studied within the context of the interstellar dust extinction and emission. Methods. Newly-derived optical property data for a-C(:H) materials, combined with that for an amorphous forsterite-type silicate with iron nano-particle inclusions, a-SilFe, are used to explore dust evolution in the interstellar medium. Results. We present a new dust model that consists of a power-law distribution of small a-C grains and log-normal distributions of large a-SilFe and a-C(:H) grains. The model, which is firmly anchored by laboratory-data, is shown to quite naturally explain the variations in the infrared (IR) to far-ultraviolet (FUV) extinction, the 217 nm UV bump, the IR absorption and emission bands and the IR-mm dust emission. Conclusions. The major strengths of the new model are its inherent simplicity and built-in capacity to follow dust evolution in interstellar media. We show that mantle accretion in molecular clouds and UV photo-processing in photo-dominated regions are likely the major drivers of dust evolution.Comment: 22 pages, 20 figure
    corecore